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CHAPTER FIVE 
 

TRANSIENT ANALYSIS 
 
 

5.1  RC NETWORK 
 
 
Considering  the RC Network shown in Figure 5.1, we can use KCL to write 
Equation (5.1). 
 

 

R C Vo(t)

 
 
  Figure 5.1 Source-free RC Network 
 
 

 C dv t
dt

v t
R

o o( ) ( )+ = 0      (5.1) 

 
i.e., 
 

 
dv t

dt
v t
CR

o o( ) ( )+ = 0      

 
If  Vm  is the initial voltage across the capacitor, then the solution to Equation 
(5.1) is 

 v t V em

t
CR

0 ( ) =
−



      (5.2) 

 
where 
 CR is the time constant 
 
Equation (5.2) represents the voltage across a discharging capacitor.  To obtain 
the voltage across a charging capacitor, let us consider Figure 5.2. 
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Vo(t)

R

CVs

 
 
 Figure 5.2   Charging of a Capacitor 
 
 
Using KCL, we get 
 

 C dv t
dt

v t V
R

o o s( ) ( )+ − = 0     (5.3)

       
If the capacitor is initially uncharged,  that is v t0 ( )  =  0 at  t  = 0, the solution 
to Equation (5.3) is given as  
 

 v t V eS

t
CR

0 1( ) = −










−




     (5.4) 

   
Examples 5.1 and 5.2 illustrate the use of MATLAB for solving problems 
related to RC Network. 
 
 
Example  5.1 
 
Assume that for Figure 5.2  C = 10 µF, use  MATLAB to plot the voltage 
across the capacitor if R is equal to (a) 1.0 kΩ,  (b) 10 kΩ  and (c) 0.1 kΩ. 
 
Solution 
 
MATLAB Script 
 

% Charging of an RC circuit 
% 
c = 10e-6; 
r1 = 1e3; 
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tau1 = c*r1; 
t = 0:0.002:0.05; 
v1 = 10*(1-exp(-t/tau1)); 
r2 = 10e3; 
tau2 = c*r2; 
v2 = 10*(1-exp(-t/tau2)); 
r3 = .1e3; 
tau3 = c*r3; 
v3 = 10*(1-exp(-t/tau3)); 
plot(t,v1,'+',t,v2,'o', t,v3,'*') 
axis([0 0.06 0 12]) 
title('Charging of a capacitor with three time constants') 
xlabel('Time, s') 
ylabel('Voltage across capacitor') 
text(0.03, 5.0, '+ for R = 1 Kilohms') 
text(0.03, 6.0, 'o for R = 10 Kilohms') 
text(0.03, 7.0, '* for R = 0.1 Kilohms') 
 

Figure 5.3 shows the charging curves. 
 
 

 
 
 Figure 5.3  Charging of Capacitor 
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From Figure 5.3, it can be seen that as the time constant is small, it takes a 
short  time for the capacitor to  charge up. 
 
 
Example 5.2 
 
For Figure 5.2, the input voltage is a rectangular pulse with an amplitude of 5V 
and a width of 0.5s.  If  C = 10 µF, plot the output voltage, v t0 ( ) , for 
resistance R equal to (a) 1000 Ω,  and  (b) 10,000 Ω.   The plots should start 
from zero seconds and end at 1.5 seconds. 
 
 
Solution 
 
MATLAB Script 
 

%  The problem will be solved using a function program rceval 
function [v, t] = rceval(r, c) 
% rceval is a function program for calculating 
%        the output voltage given the values of  
%        resistance and capacitance. 
% usage [v, t] = rceval(r, c) 
%       r is the resistance value(ohms) 
%       c is the capacitance value(Farads) 
%       v is the output voltage 
%       t is the time corresponding to voltage v 
tau  = r*c; 
for i=1:50 
    t(i) = i/100; 
    v(i) = 5*(1-exp(-t(i)/tau)); 
end 
vmax = v(50); 
 
for i = 51:100 
    t(i) = i/100; 
    v(i) = vmax*exp(-t(i-50)/tau); 
end 
end 
 
% The problem will be solved using function program 
% rceval 
% The output is obtained for the various resistances 
c = 10.0e-6; 
r1 = 2500; 
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[v1,t1] = rceval(r1,c); 
r2 = 10000; 
[v2,t2] = rceval(r2,c); 
 
% plot the voltages 
plot(t1,v1,'*w', t2,v2,'+w') 
axis([0 1 0 6]) 
title('Response of an RC circuit to pulse input') 
xlabel('Time, s') 
ylabel('Voltage, V') 
text(0.55,5.5,'* is for 2500 Ohms') 
text(0.55,5.0, '+ is for 10000 Ohms') 

 
 

Figure 5.4 shows the charging and discharging  curves. 
  
 

 
 
 Figure 5.4  Charging and Discharging of a Capacitor with Different  
        Time Constants 
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5.2 RL NETWORK 
 
Consider the RL circuit shown in Figure 5.5. 

  

L

R Vo(t)

i(t)

 
 
 Figure 5.5 Source-free RL Circuit 
 
 
Using the KVL, we get 
 

 L di t
dt

Ri t( ) ( )+ = 0      (5.5)

  
If the initial current flowing through the inductor is Im , then the solution to 
Equation (5.5) is  
 

 i t I em

t

( ) =
−



τ       (5.6) 

 
where 
 

 τ = L
R       (5.7) 

 
 
Equation (5.6) represents the current response of a source-free RL circuit with 
initial current Im , and it represents the natural response of an RL circuit. 
 
Figure 5.6 is an RL circuit with source voltage v t VS( ) = . 
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VR(t)

L

R
i(t)

V(t)

 
 Figure 5.6  RL Circuit with a Voltage Source 
 
 
Using KVL, we get 
 

 L
di t

dt
Ri t VS

( )
( )+ =      (5.8)

   
If the initial current flowing through the series circuit is zero, the solution of 
Equation (5.8) is 
 

 i t
V
R

eS
Rt
L( ) = −











−




1      (5.9) 

 
The voltage across the resistor is 
 
 v t Ri tR ( ) ( )=  

             = V eS

Rt
L1−











−




                                 (5.10) 

 
The voltage across the inductor is  
 
 v t V v tL S R( ) ( )= −  
 

                         =
−



V eS

Rt
L     (5.11) 

 
The following example illustrates the use of MATLAB for solving RL circuit 
problems.
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Example 5.3 
 
For the sequential circuit shown in Figure 5.7, the current flowing through the 
inductor is zero. At  t =  0, the switch moved from position a to b, where it 
remained for 1 s.  After the 1 s delay, the switch moved from position b to 
position c, where it remained indefinitely.   Sketch the current flowing through 
the inductor versus time. 
 

           

40V

50 Ohms

150 Ohms

200 H

50 Ohms

a
b

c

 
 Figure 5.7   RL Circuit for Example 5.3 
 
Solution 
 
For 0 < t <  1 s, we can use Equation  (5.9) to find the current 
 

 i t e
t

( ) .= −












−








0 4 1 1τ      (5.12) 

where 
 

 τ1
200

100 2= = =L
R s 

 
At  t =  1 s 
 

 ( )i t e( ) . .= − −0 4 1 0 5      (5.13) 

          =  Imax  
 
For t >  1 s, we can use Equation (5.6) to obtain the current 
 

 i t I e
t

( ) max

.

=
−

−









0 5

2τ      (5.14)
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where 

 τ 2
2

200
200 1= = =L

Req
  s 

   
 
The MATLAB program for plotting   i t( )  is shown below. 
 
MATLAB Script 

 
% Solution to Example 5.3 
% tau1 is time constant when switch is at b 
% tau2 is the time constant when the switch is in position c 
%  
 
tau1 = 200/100; 
 
for k=1:20 
  t(k) = k/20; 
  i(k) = 0.4*(1-exp(-t(k)/tau1)); 
end 
 
imax = i(20); 
tau2 = 200/200; 
for k = 21:120 
  t(k) = k/20; 
  i(k) = imax*exp(-t(k-20)/tau2); 
end 
 
% plot the current 
plot(t,i,'o') 
axis([0 6 0 0.18]) 
title('Current of an RL circuit') 
xlabel('Time, s') 
ylabel('Current, A') 

 
 
Figure 5.8 shows the current i t( ) . 
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 Figure 5.8  Current Flowing through Inductor 
 
 
 

5.3  RLC CIRCUIT 
 
 
For the series RLC circuit shown in Figure 5.9, we can  use KVL to obtain  
the Equation (5.15). 

Vo(t)

L

RVs(t) = Vs

i(t)

  Figure 5.9   Series RLC Circuit 
 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



 

 v t L
di t

dt C
i d Ri tS

t

( )
( )

( ) ( )= + +
−∞
∫

1
τ τ    (5.15) 

Differentiating the above expression, we get 
 

 
dv t

dt
L

d i t
dt

R
di t

dt
i t
C

S ( ) ( ) ( ) ( )
= + +

2

2  

 
i.e., 
 

 
1 2

2L
dv t

dt
d i t

dt
R
L

di t
dt

i t
LC

S ( ) ( ) ( ) ( )
= + +    (5.16) 

 
The homogeneous solution can be found by making  v tS ( )  = constant, thus 
 

 0
2

2= + +d i t
dt

R
L

di t
dt

i t
LC

( ) ( ) ( )
    (5.17) 

 
The characteristic equation is  
 
 0 2= + +λ λa b      (5.18) 
 
where 

 a R
L=     and  

 

b LC= 1   
 
The roots of the characteristic equation can be determined.  If we assume that 
the roots are 
 
 λ α β= ,  
 
then,  the solution to the homogeneous solution is 
 
 i t A e A eh

t t( ) = +1 2
1 2α α      (5.19) 

 
where 
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 A1  and A2  are constants. 
 
If v tS ( )  is a constant, then the forced solution will also be a constant and be 
given as  
   
 i t Af ( ) = 3       (5.20) 
 
The total solution is given as  
 
 i t A e A e At t( ) = + +1 2 3

1 2α α     (5.21) 
 
where  
 

A1 ,  A2 ,  and A3   are obtained from initial conditions. 
 
Example 5.4 illustrates the use of MATLAB for finding  the roots of  
characteristic equations.  The MATLAB function roots, described in Section 
6.3.1, is used to obtain the roots of characteristic equations. 
 
 
 
Example 5.4 
 
For the series RLC circuit shown in Figure 5.9, If L = 10 H,  R = 400 Ohms 

and  C = 100µF,  v tS ( )  = 0, i( )0 4= A  and
di

dt
( )0 15=  A/s, find  i t( ) . 

 
Solution 
 
Since  v tS ( ) = 0, we use Equation (5.17) to get 
 

 0 400
10

1000
2

2= + +d i t
dt

di t
dt

i t( ) ( ) ( )  

 
The characteristic equation is 
 
 0 40 10002= + +λ λ  
 
The MATLAB function roots is  used to obtain the roots of the characteristics 
equation. 
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MATLAB Script 
 

 p = [1 40 1000]; 
 lambda = roots(p) 
 
lambda = 
                -20.0000 +24.4949i 
                -20.0000 -24.4949i 

 
 
Using the roots obtained from MATLAB,  i t( )  is given as 
 
 i t e A t A tt( ) ( cos( . ) sin( . )= +−20

1 224 4949 24 4949  
 
 i e A A A( ) ( ( ))0 0 40

1 2 1= + ⇒ =−    

[ ]
[ ]

di t
dt

e A t A t

e A t A t

t

t

( )
cos( . ) sin( . )

. sin( . ) . cos( . )

= − + +

− +

−

−

20 24 4949 24 4949

24 4949 24 4949 24 4949 24 4949

20
1 2

20
1 2

 

 
   

 
di

dt
A A

( )
.

0
24 4949 20 152 1= − =   

 
Since A1 4= , A2 38784= .  
 

 [ ]i t e t tt( ) cos( . ) . sin( . )= +−20 4 24 4949 38784 24 4949  
   
 
Perhaps the simplest way to obtain voltages and currents in an RLC circuit is to 
use Laplace transform.  Table 5.1 shows Laplace transform pairs that are 
useful for solving RLC circuit problems.  
  
 
From the RLC circuit,  we write differential equations  by  using network 
analysis tools.  The differential equations are converted into algebraic 
equations using the Laplace transform.  The unknown current or voltage is  
then solved in the s-domain.  By using an inverse Laplace transform, the 
solution can be expressed in the time domain.  We will illustrate this method 
using Example 5.5 
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Table 5.1 
Laplace Transform Pairs 

 

  
f (t) 
 

 
f(s) 

 
1 
 

 
1                              

1
s

                                 s>0 

 
2 
 

 
t 

1
2s

                               s>0 

 
3 
 

 

t n
 

n
sn

!
+1                              s>0 

 
4 
 

 

e at−
 

1
s a+

                           s>a 

 
5 
 

 

te at−
 

1
2( )s a+

                        s>a 

 
6 

 

sin( )wt  
w

s w2 2+
                     s>0 

 

 
7 

 

cos( )wt  
s

s w2 2+
                       s>0 

 

 
8 

 

e wtat sin( )  
w

s a w( )+ +2 2
 

 
9 

 

e wtat cos( )  
s a

s a w
+

+ +( )2 2  

 

 
10 

df
dt

 sF s f( ) ( )− +0  
 

 
11 

 

f d
t

( )τ τ
0∫  

 

F s
s
( )

 

 
12 

 
f t t( )− 1

 

 

e F st s− 1 ( )  
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Example 5.5 
 
The switch in Figure 5.10 has been opened for a long time.  If the switch opens 
at t = 0,  find the voltage v t( ) .    Assume that  R = 10 Ω, L = 1/32 H,  
C = 50µF and I AS = 2 .  

 

R C LIs V(t)

t = 0

+

-

 
 Figure 5.10   Circuit for Example 5.5 
 
 
At t < 0, the voltage across the capacitor is  
 
 vC ( ) ( )( )0 2 10 20= =  V 
  
In addition, the current flowing through the inductor 
 
 iL ( )0 0=  
 
At   t > 0, the switch closes and all the four elements of Figure 5.10 remain in 
parallel.  Using KCL,  we get 
 

 I
v t
R

C
dv t

dt L
v d iS

t

L= + + +∫
( ) ( )

( ) ( )
1

0
0

τ τ  

 
Taking the Laplace transform of the above expression,  we get 
 

 
I
s

V s
R

C sV s V
V s

sL
i

s
S

C
L= + − + +

( )
[ ( ) ( )]

( ) ( )
0

0
 

 
Simplifying the above expression, we get 
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3 Ohms 4 Ohms

2 Ohms 2 Ohms

 2 Ohms  4 Ohms

 2 Ohms 4 Ohms

 4 Ohms  3 Ohms

6 V

6 V

I1 I2

I3 I4

 

For  I S   = 2A, C = 50µ F, R = 10Ω, L = 1/32 H, V s( )  becomes 

 V s s
s s

( )
*

= +
+ +

40000 20
2000 64 102 4  

 V s s
s s

A
s

B
s

( )
( )( ) ( ) ( )

= +
+ +

=
+

+
+

40000 20
1600 400 1600 400

  

 A V s s
s
Lim= +
→ −1600

1600( )( ) =  -6.67 

 B V s s
s
Lim= +
→ −400

400( )( )    =  26.67 

 v t e et t( ) . .= − +− −6 67 26 671600 400  

The plot of v t( )  is shown in Figure 5.13. 

 

5.4 STATE VARIABLE APPROACH 

Another method of finding the transient response of an RLC circuit is the state 
variable technique.   The later method  (i) can be used to analyze and 
synthesize control systems, (ii) can be applied to time-varying and nonlinear 
systems, (iii) is suitable for digital and computer solution and (iv) can be used 
to develop the general system characteristics. 

A state of a system is a minimal set of variables chosen  such that if their 
values are known at  the time t, and  all inputs are known for times greater 
than t1 , one can calculate the output of the system for times greater than t1 .  
In general, if we designate x  as the state variable, u  as the input, and y  as 
the output of  a system, we can express the input u and output y   as 
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 x t Ax t Bu t( ) ( ) ( )
•

= +      (5.22) 

 y t Cx t Du t( ) ( ) ( )= +     (5.23) 

where 

u t

u t
u t

u tn

( )

( )
( )
.
.
( )

=























1

2

  x t

x t
x t

x tn

( )

( )
( )
.
.
( )

=























1

2

  y t

y t
y t

y tn

( )

( )
( )
.
.
( )

=























1

2

 

 

and A, B, C, and  D are matrices  determined by constants of a system. 

For example, consider a single-input and a single-output system described by 
the differential equation 

d y t
dt

d y t
dt

d y t
dt

dy t
dt

y t u t
4

4

3

3

2

23 4 8 2 6( ) ( ) ( ) ( ) ( ) ( )+ + + + =  

        (5.24)
  

We define the components of the state vector as 

 x t y t1( ) ( )=  

 x t dy t
dt

dx t
dt

x t2
1

1( ) ( ) ( ) ( )= = =
•

 

 x t d y t
dt

dx t
dt

x t3

2

2
2

2( ) ( ) ( ) ( )= = =
•

 

 x t d y t
dt

dx t
dt

x t4

3

3
3

3( ) ( ) ( ) ( )= = =
•

 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



 x t d y t
dt

dx t
dt

x t5

4

4
4

4( ) ( ) ( ) ( )= = =
•

   (5.25) 

Using Equations (5.24) and (5.25), we get  

 x t u t x t x t x t x t4 4 3 2 16 3 4 8 2( ) ( ) ( ) ( ) ( ) ( )
•

= − − − −  (5.26) 

From the Equations (5.25) and (5.26), we get 

 

x t

x t

x t

x t

x t
x t
x t
x t

u t

1

2

3

4

1

2

3

4

0 1 0 0
0 0 1 0
0 0 0 1
2 8 4 3

0
0
0
6

( )

( )

( )

( )

( )
( )
( )
( )

( )

•

•

•

•























=

− − − −





































+



















 (5.27) 

or  x t Ax t Bu t( ) ( ) ( )
•

= +     (5.28) 

where 

 x

x t

x t

x t

x t

•

•

•

•

•

=























1

2

3

4

( )

( )

( )

( )

; A =

− − − −



















0 1 0 0
0 0 1 0
0 0 0 1
2 8 4 3

; B =



















0
0
0
6

 (5.29) 

Since 

 y t x t( ) ( )= 1   

we can express the output y t( )  in terms of the state x t( )  and input u t( )  as 

 y t Cx t Du t( ) ( ) ( )= +     (5.30) 

where 
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 [ ]C = 1 0 0 0   and     [ ]D = 0     (5.31) 

 

In RLC circuits, if the voltage across a capacitor and the current flowing in an 
inductor are known at some initial time t,  then the capacitor voltage and 
inductor current will allow the description of system behavior for all 
subsequent times.   This suggests the following guidelines for the selection of 
acceptable state variables for RLC circuits: 

1.   Currents associated with inductors are state variables. 

2. Voltages associated with capacitors are state variables. 

3. Currents or voltages associated with resistors do not specify 
independent state variables. 

4. When closed loops of capacitors or junctions of  inductors exist in a 
circuit, the state variables chosen according to rules 1 and 2 are not 
independent. 

 

Consider the circuit shown in Figure 5.11. 

Vs

R1 R3R2

C1 C2
LV1 V2

I1

y(t)

+
+

+

- -

-

 

Figure 5.11   Circuit for State Analysis 

Using the above guidelines, we select the state variables to be V V1 2, , and i1 .   

Using nodal analysis, we have 
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 C dv t
dt

V V
R

V V
R

s
1

1 1

1

1 2

2

0( ) + − + − =    (5.32) 

 C
dv t

dt
V V

R
i2

2 2 1

2
1 0

( )
+

−
+ =     (5.33) 

Using loop analysis 

 V i R L di t
dt2 1 3
1= + ( )

     (5.34)

   

The output y t( )  is given as  

 y t v t v t( ) ( ) ( )= −1 2      (5.35) 

Simplifying Equations (5.32)  to (5.34), we  get 

 
dv t

dt C R C R
V V

C R
V

C R
s1

1 1 1 2
1

2

1 2 1 1

1 1( ) ( )= − + + +   (5.36)

  

 
dv t

dt
V

C R
V

C R
i
C

2 1

2 2

2

2 2

1

2

( )
= − −     (5.37) 

 
di t

dt
V
L

R
L

i1 2 3
1

( ) = −      (5.38) 

Expressing  the equations in matrix form, we get 

V

V
i

C R C R C R

C R C R C

L
R
L

V
V
i

C R
Vs

1

2

1

1 1 1 2 1 2

2 2 2 2 2

3

1

2

1

1 1

1 1 1
0

1 1 1

0
1

1

0
0

•

•

•



















=
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and the output is 

 [ ]y
V
V
i

= −
















1 1 0
1

2

1

     (5.40) 

MATLAB functions for solving ordinary differential equations are ODE 
functions.  These are described in the following section. 

 

5.4.1 MATLAB Ode Functions 

MATLAB has two functions, ode23 and ode45, for computing numerical 
solutions to ordinary differential equations.  The ode23 function integrates a 
system of ordinary differential equations using second- and third-order Runge-
Kutta formulas; the ode45 function uses fourth- and fifth-order Runge-Kutta 
integration equations. 

The general forms of the ode functions are 

 [ t,x ]  =  ode23 (xprime, tstart, tfinal, xo, tol,trace) 

  or 

 [ t,x ]  =  ode45 (xprime, tstart, tfinal, xo, tol, trace) 

where 

xprime    is the name (in quotation marks) of the MATLAB function 
or m-file that contains the differential equations to be integrated. The 

function will compute the state derivative vector x t( )
•

 given the 
current time t, and state vector x t( ) . The function must have 2 input 
arguments, scalar t (time) and column vector x (state) and the 

function returns the output  argument xdot x, ( )
.

, a column vector of 
state derivatives  

   x t dx t
dt

( ) ( )
1

1
•

=  
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 tstart is the starting time for the integration 

 tfinal is the final time for the integration 

 xo is a column vector of initial conditions 

tol is optional. It specifies the desired accuracy of the solution. 

Let us illustrate the use of MATLAB ode functions with the following two 
examples. 

 

Example 5.6 

For Figure 5.2,  VS  = 10V,  R = 10,000 Ω,  C = 10µF.  Find the output voltage 
v t0 ( ) , between the interval  0 to 20 ms, assuming v0 0 0( ) =  and by  (a) 
using a numerical solution to the differential equation; and (b)  analytical 
solution. 

 

Solution 

From Equation (5.3), we have 

 C dv t
dt

v t V
R

o o s( ) ( )+ − = 0  

thus 

 
dv t

dt
V
CR

v t
CR

v to s o( ) ( ) ( )= − = −100 10 0  

From Equation(5.4), the analytical solution is 

 v t e
t

CR
0 10 1( ) = −











−



  

MATLAB Script 
 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



 

% Solution for first order differential equation 
% the function diff1(t,y) is created to evaluate 
% the differential equation 
% Its m-file is diff1.m 
% 
% Transient analysis of RC circuit using ode  
% function and analytical solution 
% numerical solution using ode 
 
t0 = 0; 
tf = 20e-3; 
xo = 0;  % initial conditions 
[t, vo] = ode23('diff1',t0,tf,xo); 
 
% the analytical solution given by Equation(5.4) is 
vo_analy = 10*(1-exp(-10*t)); 
 
% plot two solutions 
subplot(121) 
plot(t,vo,'b') 
title('State Variable Approach') 
xlabel('Time, s'),ylabel('Capacitor Voltage, V'),grid 
subplot(122) 
plot(t,vo_analy,'b') 
title('Analytical Approach') 
xlabel('Time, s'),ylabel('Capacitor Voltage, V'),grid 

 
%  
function dy = diff1(t,y) 
dy = 100 - 10*y; 
end 

 
 
Figure 5.12 shows the plot obtained using Equation (5.4) and that obtained 
from  the MATLAB ode23 function.  From  the two plots, we  can see  that the 
two results are identical. 
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 (a)    (b) 

Figure 5.12    Output Voltage v t0 ( )  Obtained from (a) State                  
Variable Approach and (b) Analytical Method 

 

Example 5.7 

For Figure 5.10, if R = 10Ω,  L = 1/32 H,  C = 50µF, use a numerical solution 
of the differential equation to solve v t( ) .  Compare the numerical solution to 
the analytical solution obtained from Example 5.5. 

Solution 

From Example 5.5, vC ( )0  = 20V, iL ( )0 0= ,  and 

 
L

di t
dt

v t

C
dv t

dt
i

v t
R

I

L
C

C
L

C
S

( )
( )

( ) ( )

=

+ + − =0
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Simplifying, we get 

 

di t
dt

v t
L

dv t
dt

I
C

i t
C

v t
RC

L C

C S L C

( ) ( )

( ) ( ) ( )

=

= − −
 

Assuming that 

  
x t i t
x t v t

L

C

1

2

( ) ( )
( ) ( )

=
=  

We get 

 x t
L

x t1 2

1•
=( ) ( )  

 x t
I
C C

x t
RC

x tS
2 1 2

1 1•
= − −( ) ( ) ( )   

We create function m-file containing the above  differential equations. 

MATLAB Script 
 

%  Solution of second-order differential equation 
% The function diff2(x,y) is created to evaluate the diff. equation 
%  the name of the m-file is diff2.m 
%  the function is defined as: 
% 
function xdot = diff2(t,x) 
is = 2; 
c = 50e-6;  L = 1/32;  r = 10; 
k1 = 1/c ;   %  1/C  
k2 =  1/L ;   %  1/L   
k3 = 1/(r*c);   % 1/RC 
 
xdot(1) = k2*x(2); 
xdot(2) = k1*is - k1*x(1) - k3*x(2); 
end 
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To simulate the differential equation defined in diff2 in the interval 0 ≤ t ≤ 30 
ms,  we note that 

 x iL1 0 0 0( ) ( )= =  V 

 x vC2 0 0 20( ) ( )= =  

Using  the MATLAB ode23 function, we get 
 

% solution of second-order differential equation 
% the function diff2(x,y) is created to evaluate 
% the differential equation 
% the name of m-file is diff2.m 
% 
% Transient analysis of RLC circuit using ode function 
% numerical solution 
 
t0 = 0;  
tf = 30e-3; 
x0 = [0 20]; % Initial conditions 
[t,x] = ode23('diff2',t0,tf,x0); 
 
% Second column of matrix x represent capacitor voltage 
subplot(211), plot(t,x(:,2)) 
xlabel('Time, s'), ylabel('Capacitor voltage, V') 
text(0.01, 7, 'State Variable Approach') 
 
% Transient analysis of RLC circuit from Example 5.5 
t2 =0:1e-3:30e-3; 
vt = -6.667*exp(-1600*t2) + 26.667*exp(-400*t2); 
subplot(212), plot(t2,vt) 
xlabel('Time, s'), ylabel('Capacitor voltage, V') 
text(0.01, 4.5, 'Results from Example 5.5') 

The plot is shown in Figure 5.13.  
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Figure 5.13  Capacitor Voltage v t0 ( )  Obtained from Both State 
Variable Approach and  Laplace Transform 

The results from the state variable approach and those obtained from Example 
5.5 are identical. 

 

Example 5.8 

For Figure 5.11,  if v t u tS ( ) ( )= 5  where u t( )  is the unit step function and 
R R R K1 2 3 10= = = Ω ,   C C F1 2 5= = µ ,  and L = 10 H, find and plot 

the voltage v t0 ( )  within the intervals of 0 to 5 s. 

Solution 

Using the element values and Equations (5.36) to (5.38), we have 

 
dv t

dt
v t v t Vs

1
1 240 20 20( ) ( ) ( )= − + +  
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dv t

dt
v t v t i t2

1 2 120 20( ) ( ) ( ) ( )= − −  

 
di t

dt
v t i t1

2 101 1000( ) . ( ) ( )= −  

We create an m-file containing the above differential equations. 
 
MATLAB Script 

 
% 
% solution of a set of first order differential equations 
% the function diff3(t,v) is created to evaluate 
% the differential equation 
% the name of the m-file is diff3.m 
% 
 
function vdot = diff3(t,v) 
 
vdot(1) = -40*v(1) + 20*v(2) + 20*5; 
vdot(2) = 20*v(1) - 20*v(2) - v(3); 
vdot(3) = 0.1*v(2) -1000*v(3); 
end 

To obtain the output voltage in the interval of  0 ≤ t  ≤  5 s,  we note that the 
output voltage 

  v t v t v t0 1 2( ) ( ) ( )= −   

Note that at t < 0, the step signal is zero so 

  v v i0 2 10 0 0 0( ) ( ) ( )= = =    

Using ode45 we get 

 
% solution of a set of first-order differential equations 
% the function diff3(t,v) is created to evaluate 
% the differential equation 
% the name of the m-file is diff3.m 
% 
% Transient analysis of RLC circuit using state 
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% variable approach 
 
t0 = 0; 
tf = 2; 
x0 = [0 0 0]; % initial conditions 
 
[t,x] = ode23('diff3', t0, tf, x0); 
 
tt = length(t); 
 
for i = 1:tt 
   vo(i) = x(i,1) - x(i,2); 
end 
 
plot(t, vo) 
title('Transient analysis of RLC') 
xlabel('Time, s'), ylabel('Output voltage') 

The plot of the output voltage is shown in Figure 5.14. 

 

Figure 5.14  Output Voltage  10 V

10,000 Ohms

L
R

V
LPL  

 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



SELECTED BIBLIOGRAPHY  
 
1.            MathWorks, Inc., MATLAB,  High-Performance Numeric  
 Computation Software,  1995. 
 
2. Biran, A. and Breiner, M.  MATLAB for Engineers, Addison-Wesley,   
 1995. 
 
3. Etter, D.M., Engineering Problem Solving with MATLAB,  2nd

 Edition, Prentice Hall, 1997. 
 
4. Nilsson, J.W., Electric Circuits, 3rd Edition, Addison-Wesley  
 Publishing Company, 1990. 
 
5. Vlach, J.O., Network Theory and CAD, IEEE Trans. on Education,  
 Vol. 36, No. 1, Feb. 1993, pp. 23 - 27. 
 
6. Meader, D. A., Laplace Circuit Analysis and Active Filters,  Prentice  
 Hall, New Jersey, 1991. 

 

 

EXERCISES  
 

5.1   If the switch is opened at t = 0,  find v t0 ( ) .  Plot v t0 ( )  between the   
time interval  0 ≤ t  ≤ 5 s. 

30V

20 kilohms 10 kilohms

1  microfarads40 kilohms

t = 0

Vo(t)

 

 Figure P5.1  Figure for Exercise 5.1 
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5.2        The switch is close at t = 0; find i t( )  between the intervals 0 to 10 
  ms.  The resistance values are in ohms. 
 

9V
8 8

16

4 H

t = 0

i(t)

 

 Figure P5.2  Figure for Exercise 5.2 
 
5.3 For the series RLC circuit, the switch is closed at t = 0.  The initial  

energy in the storage elements is zero.  Use MATLAB to find  v t0 ( ) . 

 

10 Ohms 1.25 H

0.25 microfarads8 V Vo(t)

t = 0

 

 Figure P5.3  Circuit for Exercise 5.3 

5.4 Use MATLAB to solve the following differential equation 

 
d y t

dt
d y t

dt
dy t

dt
y t

3

3

2

27 14 12 10( ) ( ) ( ) ( )+ + + =  
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with initial conditions 

  y( )0 1= , 
dy

dt
( )0 2= ,  

d y
dt

2

2
0 5( ) =  

 Plot  y(t) within the intervals of 0 and 10 s. 
 
5.5   For Figure P5.5, if  V u tS = 5 ( ),  determine the voltages V1(t), V2(t),   

V3(t) and V4(t) between the intervals of 0 to 20 s.  Assume that the initial 
voltage across each capacitor is zero. 

 

VS

1 kilohms

1pF

 V1 1 kilohms1 kilohms1 kilohms

4pF3pF2pF

 V4 V3 V2

 

 Figure P5.5   RC Network 

 

5.6 For the differential equation 

 
d y t

dt
dy t

dt
y t t t

2

2 5 6 3 7
( ) ( )

( ) sin( ) cos( )+ + = +  

with initial conditions   y( )0 4=    and   
dy

dt
( )0 1= −  

(a)  Determine  y t( )  using Laplace transforms. 

(b)  Use MATLAB to determine y t( ) . 

 (c)   Sketch y t( )  obtained in parts (a) and (b). 

 (d)   Compare the results obtained in part c. 
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